enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized extreme value distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_extreme_value...

    In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.

  3. Saddlepoint approximation method - Wikipedia

    en.wikipedia.org/wiki/Saddlepoint_approximation...

    The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.

  4. Extreme value theory - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theory

    Extreme value theory or extreme value analysis (EVA) is the study of extremes in statistical distributions. It is widely used in many disciplines, such as structural engineering , finance , economics , earth sciences , traffic prediction, and geological engineering .

  5. Gumbel distribution - Wikipedia

    en.wikipedia.org/wiki/Gumbel_distribution

    The standard Gumbel distribution is the case where = and = with cumulative distribution function = ()and probability density function = (+).In this case the mode is 0, the median is ⁡ (⁡ ()), the mean is (the Euler–Mascheroni constant), and the standard deviation is /

  6. Fisher–Tippett–Gnedenko theorem - Wikipedia

    en.wikipedia.org/wiki/Fisher–Tippett–Gnedenko...

    The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution , above. The study of conditions for convergence of to particular cases of the generalized extreme value distribution began with Mises (1936) [3] [5] [4] and was further developed by Gnedenko (1943).

  7. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  8. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    Similarly, [1] ⁡ [()] (′ (⁡ [])) ⁡ [] = (′ ()) (″ ()) The above is obtained using a second order approximation, following the method used in estimating ...

  9. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    In probability, and statistics, a multivariate random variable or random vector is a list or vector of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value.