enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem. It states that the sum of the two legs squared equals the hypotenuse squared.

  4. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written a 2 + b 2 = c 2 , {\displaystyle a^{2}+b^{2}=c^{2},} where c {\displaystyle c} is the length of the hypotenuse (side opposite the right angle), and a {\displaystyle a} and b {\displaystyle b} are the lengths of the legs ...

  5. Cathetus - Wikipedia

    en.wikipedia.org/wiki/Cathetus

    By the Pythagorean theorem, the sum of the squares of the lengths of the catheti is equal to the square of the length of the hypotenuse. The term leg, in addition to referring to a cathetus of a right triangle, is also used to refer to either of the equal sides of an isosceles triangle or to either of the non-parallel sides of a trapezoid.

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    This proof is independent of the Pythagorean theorem, insofar as it is based only on the right-triangle definition of cosine and obtains squared side lengths algebraically. Other proofs typically invoke the Pythagorean theorem explicitly, and are more geometric, treating a cos γ as a label for the length of a certain line segment. [12]

  7. Bride's Chair - Wikipedia

    en.wikipedia.org/wiki/Bride's_Chair

    The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...

  8. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 10 describes Pythagorean triangles with a side or area that is a square or cube, connecting this problem to Fermat's Last Theorem. After a chapter on Heronian triangles , Chapter 12 returns to this theme, discussing triangles whose hypotenuse and sum of sides are squares.

  9. Fermat's right triangle theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_right_triangle...

    Therefore, Fermat's proof that no Pythagorean triangle has a square area implies the truth of the exponent-case of Fermat's Last Theorem. [7] Another equivalent formulation of the same problem involves congruent numbers, the numbers that are areas of right triangles whose three sides are all rational numbers.