Search results
Results from the WOW.Com Content Network
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics.
In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime ...
Numerical relativity is the sub-field of general relativity which seeks to solve Einstein's equations through the use of numerical methods. Finite difference , finite element and pseudo-spectral methods are used to approximate the solution to the partial differential equations which arise.
Derivation of Newton's law of gravity Newtonian gravitation can be written as the theory of a scalar field, Φ , which is the gravitational potential in joules per kilogram of the gravitational field g = −∇Φ , see Gauss's law for gravity ∇ 2 Φ ( x → , t ) = 4 π G ρ ( x → , t ) {\displaystyle \nabla ^{2}\Phi \left({\vec {x}},t ...
But in a relativistic theory of gravity, mass cannot be the only source of gravity. Relativity links mass with energy, and energy with momentum. The equivalence between mass and energy, as expressed by the formula E = mc 2, is the most famous consequence of special relativity. In relativity, mass and energy are two different ways of describing ...
Newton's law was later superseded by Albert Einstein's theory of general relativity, but the universality of the gravitational constant is intact and the law still continues to be used as an excellent approximation of the effects of gravity in most applications. Relativity is required only when there is a need for extreme accuracy, or when ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.