enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.

  3. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  4. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  5. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    Download QR code; Print/export ... This solution is known as the Bayes classifier. ... Naive Bayes classifier; References

  6. Bayesian classifier - Wikipedia

    en.wikipedia.org/wiki/Bayesian_classifier

    In computer science and statistics, Bayesian classifier may refer to: any classifier based on Bayesian probability; a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier

  7. KH Coder - Wikipedia

    en.wikipedia.org/wiki/KH_Coder

    on document-level: Searching, clustering, and Naive Bayes classifier KH Coder allows for further search and statistical analysis functions using back-end tools such as Stanford POS Tagger , the natural language processing toolkit FreeLing, Snowball stemmer , MySQL and R .

  8. WordStat - Wikipedia

    en.wikipedia.org/wiki/WordStat

    Classification of documents using Naïve-Bayes or k-nearest neighbor algorithms applied either on words or concepts. Automatic topic extraction using first order (word co-occurrences) or second order (co-occurrence profiles) hierarchical clustering and multidimensional scaling. Topic modeling to extract the main themes using NNMF and Factor ...

  9. Additive smoothing - Wikipedia

    en.wikipedia.org/wiki/Additive_smoothing

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... Additive smoothing is commonly a component of naive Bayes classifiers.