Search results
Results from the WOW.Com Content Network
[6] [7] Due to the two step nature, the Raschig–Hooker process can be used to produce either chlorobenzene or phenol. Reaction scheme of the Raschig-Hooker process. The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the Dow and Bayer process, which also converts benzene into phenol. In fact ...
Phenol is an organic compound appreciably soluble in water, with about 84.2 g dissolving in 1000 ml (0.895 M).Homogeneous mixtures of phenol and water at phenol to water mass ratios of ~2.6 and higher are possible.
Dow process (phenol), a method of phenol production through the hydrolysis of chlorobenzene Topics referred to by the same term This disambiguation page lists articles associated with the title Dow process .
When 1-[14 C]-1-chlorobenzene was subjected to aqueous NaOH at 395 °C, ipso substitution product 1-[14 C]-phenol was formed in 54% yield, while cine substitution product 2-[14 C]-phenol was formed in 43% yield, indicating that an elimination-addition (benzyne) mechanism is predominant, with perhaps a small amount of product from addition ...
Acetophenone is formed as a byproduct of the cumene process, the industrial route for the synthesis of phenol and acetone.In the Hock rearrangement of isopropylbenzene hydroperoxide, migration of a methyl group rather than the phenyl group gives acetophenone and methanol as a result of an alternate rearrangement of the intermediate:
In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (−O H) bonded directly to an aromatic hydrocarbon group. [1] The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the ...
The cumene process (cumene-phenol process, Hock process) is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene (isopropyl benzene), the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), [1] and independently by Heinrich Hock in ...
The Kolbe–Schmitt reaction or Kolbe process (named after Hermann Kolbe and Rudolf Schmitt) is a carboxylation chemical reaction that proceeds by treating phenol with sodium hydroxide to form sodium phenoxide, [1] then heating sodium phenoxide with carbon dioxide under pressure (100 atm, 125 °C), then treating the product with sulfuric acid.