Search results
Results from the WOW.Com Content Network
In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal (that is, if it is also equilateral) then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths. For clarity, a planar equiangular polygon can be called direct or ...
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.
Computing the maximum number of equiangular lines in n-dimensional Euclidean space is a difficult problem, and unsolved in general, though bounds are known. The maximal number of equiangular lines in 2-dimensional Euclidean space is 3: we can take the lines through opposite vertices of a regular hexagon, each at an angle 120 degrees from the other two.
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
Composite patterns: aphids and newly born young in arraylike clusters on sycamore leaf, divided into polygons by veins, which are avoided by the young aphids Living things like orchids, hummingbirds, and the peacock's tail have abstract designs with a beauty of form, pattern and colour that artists struggle to match. [21]
Experts say vehicle-based attacks are simple for a 'lone wolf' terrorist to plan and execute, and challenging for authorities to prevent.
Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space.