enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power Jets WU - Wikipedia

    en.wikipedia.org/wiki/Power_Jets_WU

    The combustion chamber was connected to the compressor outlet by a very large single spiral duct giving the engine an asymmetrical appearance. Whittle designed the centrifugal compressor to develop about 4:1 pressure ratio when, as far as he was aware, the best previously demonstrated performance in a single stage was about 2.5:1.

  3. Tesla valve - Wikipedia

    en.wikipedia.org/wiki/Tesla_valve

    The flow resistance is defined, analogously to Ohm's law for electrical resistance, [2] as the ratio of applied pressure drop and resulting flow rate: R = Δ p Q {\displaystyle R={\frac {\Delta p}{Q}}} where Δ p {\displaystyle \Delta p} is the applied pressure difference between two ends of the conduit, and Q {\displaystyle Q} the flow rate.

  4. Reverse-flow cylinder head - Wikipedia

    en.wikipedia.org/wiki/Reverse-flow_cylinder_head

    The reverse flow design is generally considered [according to whom?] to be inferior to a crossflow design in terms of ultimate engineering potential for two reasons. Firstly, there is limited space when inlet and exhaust ports are arranged in a line on one side of the head meaning a reduction in port area compared to a crossflow head.

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.

  6. Crossflow cylinder head - Wikipedia

    en.wikipedia.org/wiki/Crossflow_cylinder_head

    A crossflow head gives better performance than a Reverse-flow cylinder head (though not as good as a uniflow), but the popular explanation put forward for this — that the gases do not have to change direction and hence are moved into and out of the cylinder more efficiently — is a simplification since there is no continuous flow because of valve opening and closing.

  7. Flashback arrestor - Wikipedia

    en.wikipedia.org/wiki/Flashback_arrestor

    Further gas flow in the case of pressure shocks. The entry of air or oxygen into the distribution line or single cylinders. Flashbacks which are the rapid propagation of a flame down the hose. Further gas flow in the event of a burnback. According to the standard DIN EN ISO 5175-1 (formerly EN 730-1) they include a minimum of two safety elements:

  8. Air flow bench - Wikipedia

    en.wikipedia.org/wiki/Air_flow_bench

    An orifice with a flow coefficient of 0.59 would flow the same amount of fluid as a perfect orifice with 59% of its area or 59% of the flow of a perfect orifice with the same area (orifice plates of the type shown would have a coefficient of between 0.58 and 0.62 depending on the precise details of construction and the surrounding installation).

  9. Reverse flow - Wikipedia

    en.wikipedia.org/wiki/Reverse_flow

    Reverse flow may refer to: In engine technology a reverse flow cylinder head is one that locates the intake and exhaust ports on the same side of the engine. Reverse logistics, i.e. goods/waste flowing in the distribution network having consumers as point of origin; Reverse electron flow is a mechanism in microbial metabolism