Search results
Results from the WOW.Com Content Network
The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. [1] The central canal lies below and is connected to the ventricular system of the brain , from which it receives cerebrospinal fluid, and shares the same ependymal lining.
The cerebral aqueduct, as other parts of the ventricular system of the brain, develops from the central canal of the neural tube, and it originates from the portion of the neural tube that is present in the developing mesencephalon, hence the name "mesencephalic duct." [4]
As the brain develops, by the fourth week of embryological development three swellings known as brain vesicles have formed within the embryo around the canal, near where the head will develop. The three primary brain vesicles represent different components of the central nervous system : the prosencephalon , mesencephalon and rhombencephalon .
Embryonic vertebrate subdivisions of the developing human brain hindbrain or rhombencephalon is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum.
The cranial cavity houses the Brain, Meninges, and the Cerebrospinal Fluid. The primary function of the brain is supplying information to the rest of the body and to help it function as whole. It helps supply some of the cranial nerves from the face to the feet and also to help get the body performing critical bodily functions.
The brain is the central organ of the human nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system ...
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord.The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts.
The arachnoid mater and dura mater are very close together throughout the cranium and spinal canal all the way to sacral vertebra S2, where the two layers fuse into one and end in the filum terminale, which attaches to the coccygeal end of the spinal canal. Sandwiched between the dura and arachnoid maters lie some veins that connect the brain's ...