Search results
Results from the WOW.Com Content Network
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
The delta functions contain ... The line itself should be labelled by an ... The contribution of each diagram to the correlation function must be divided by its ...
The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
For each short exact sequence as above, there is a long exact sequence; For each morphism of short exact sequences and for each non-negative n, the induced square . is commutative (the δ n on the top is that corresponding to the short exact sequence of M's whereas the one on the bottom corresponds to the short exact sequence of N's).
Delta connective, a unary connective in t-norm fuzzy logics; Delta method for approximating the distribution of a function; Difference operator (Δ) Dirac delta function (δ function) Kronecker delta Laplace operator (Δ) Modular discriminant (Δ) Symmetric difference (Δ) Non-inferiority margin (δ) Δ m
In the classification of Lorentz group representations, the representation is labelled (,) (,). The abuse of terminology extends to forming this representation at the group level.