Search results
Results from the WOW.Com Content Network
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.
Constant level of this surface is identified from the equation (,) =, where is called as the stoichiometric mixture fraction which is obtained by setting = = (since if they were react to consume fuel and oxygen, only on the stoichiometric locations both fuel and oxygen will be consumed completely) in the definition of to obtain
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
In meteorology, mixing ratio usually refers to the mass ratio of water , which is defined as the mass of water divided by the mass of dry air in a given air parcel: [3] ζ = m H 2 O m a i r − m H 2 O {\displaystyle \zeta ={\frac {m_{\mathrm {H2O} }}{m_{\mathrm {air} }-m_{\mathrm {H2O} }}}}
where w C, w H, w S, w O refer to the mass fraction of each element in the fuel oil, sulfur burning to SO 2, and AFR mass refers to the air-fuel ratio in mass units. For 1 kg of fuel oil containing 86.1% C, 13.6% H, 0.2% O, and 0.1% S the stoichiometric mass of air is 14.56 kg, so AFR = 14.56. The combustion product mass is then 15.56 kg.
The stoichiometry of a chemical reaction is based on chemical formulas and equations that provide the quantitative relation between the number of moles of various products and reactants, including yields. [8] Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction ...
The amine value is useful in helping determine the correct stoichiometry of a two component amine cure epoxy resin system. [6] [7] [8]It is the number of Nitrogens x 56.1 (Mwt of KOH) x 1000 (convert to milligrams) divided by molecular mass of the amine functional compound.
In chemical thermodynamics, the reaction quotient (Q r or just Q) [1] is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry at a particular point in time.