enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.

  3. Mixture fraction - Wikipedia

    en.wikipedia.org/wiki/Mixture_fraction

    Constant level of this surface is identified from the equation (,) =, where is called as the stoichiometric mixture fraction which is obtained by setting = = (since if they were react to consume fuel and oxygen, only on the stoichiometric locations both fuel and oxygen will be consumed completely) in the definition of to obtain

  4. Mass fraction (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Mass_fraction_(chemistry)

    Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...

  5. Mixing ratio - Wikipedia

    en.wikipedia.org/wiki/Mixing_Ratio

    In meteorology, mixing ratio usually refers to the mass ratio of water , which is defined as the mass of water divided by the mass of dry air in a given air parcel: [3] ζ = m H 2 O m a i r − m H 2 O {\displaystyle \zeta ={\frac {m_{\mathrm {H2O} }}{m_{\mathrm {air} }-m_{\mathrm {H2O} }}}}

  6. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    where w C, w H, w S, w O refer to the mass fraction of each element in the fuel oil, sulfur burning to SO 2, and AFR mass refers to the air-fuel ratio in mass units. For 1 kg of fuel oil containing 86.1% C, 13.6% H, 0.2% O, and 0.1% S the stoichiometric mass of air is 14.56 kg, so AFR = 14.56. The combustion product mass is then 15.56 kg.

  7. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    The stoichiometry of a chemical reaction is based on chemical formulas and equations that provide the quantitative relation between the number of moles of various products and reactants, including yields. [8] Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction ...

  8. Amine value - Wikipedia

    en.wikipedia.org/wiki/Amine_value

    The amine value is useful in helping determine the correct stoichiometry of a two component amine cure epoxy resin system. [6] [7] [8]It is the number of Nitrogens x 56.1 (Mwt of KOH) x 1000 (convert to milligrams) divided by molecular mass of the amine functional compound.

  9. Reaction quotient - Wikipedia

    en.wikipedia.org/wiki/Reaction_quotient

    In chemical thermodynamics, the reaction quotient (Q r or just Q) [1] is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry at a particular point in time.