Search results
Results from the WOW.Com Content Network
However, parser generators for context-free grammars often support the ability for user-written code to introduce limited amounts of context-sensitivity. (For example, upon encountering a variable declaration, user-written code could save the name and type of the variable into an external data structure, so that these could be checked against ...
A predictive parser is a recursive descent parser that does not require backtracking. [3] Predictive parsing is possible only for the class of LL( k ) grammars, which are the context-free grammars for which there exists some positive integer k that allows a recursive descent parser to decide which production to use by examining only the next k ...
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
A rolling hash (also known as recursive hashing or rolling checksum) is a hash function where the input is hashed in a window that moves through the input.. A few hash functions allow a rolling hash to be computed very quickly—the new hash value is rapidly calculated given only the old hash value, the old value removed from the window, and the new value added to the window—similar to the ...
Mazes can be created with recursive division, an algorithm which works as follows: Begin with the maze's space with no walls. Call this a chamber. Call this a chamber. Divide the chamber with a randomly positioned wall (or multiple walls) where each wall contains a randomly positioned passage opening within it.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
A simple example for left recursion removal: The following production rule has left recursion on E E -> E '+' T E -> T This rule is nothing but list of Ts separated by '+'. In a regular expression form T ('+' T)*. So the rule could be rewritten as E -> T Z Z -> '+' T Z Z -> ε Now there is no left recursion and no conflicts on either of the rules.
Python 2.5 implements better support for coroutine-like functionality, based on extended generators ; Python 3.3 improves this ability, by supporting delegating to a subgenerator ; Python 3.4 introduces a comprehensive asynchronous I/O framework as standardized in PEP 3156, which includes coroutines that leverage subgenerator delegation