enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.

  3. Wigner quasiprobability distribution - Wikipedia

    en.wikipedia.org/wiki/Wigner_quasiprobability...

    In the special case of the quantum harmonic oscillator, however, the evolution is simple and appears identical to the classical motion: a rigid rotation in phase space with a frequency given by the oscillator frequency. This is illustrated in the gallery below.

  4. Coherent state - Wikipedia

    en.wikipedia.org/wiki/Coherent_state

    The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2] For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook [3]). The coherent state describes a state ...

  5. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  6. Propagator - Wikipedia

    en.wikipedia.org/wiki/Propagator

    In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum.

  7. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    In these terms, an example of zero-point energy is the above E = ⁠ ħω / 2 ⁠ associated with the ground state of the quantum harmonic oscillator. In quantum mechanical terms, the zero-point energy is the expectation value of the Hamiltonian of the system in the ground state. If more than one ground state exists, they are said to be ...

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...

  9. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    The dynamical symmetry group of the n dimensional quantum harmonic oscillator is the special unitary group SU(n). As an example, the number of infinitesimal generators of the corresponding Lie algebras of SU(2) and SU(3) are three and eight respectively.