Search results
Results from the WOW.Com Content Network
Recursive data structures can dynamically grow to an arbitrarily large size in response to runtime requirements; in contrast, a static array's size requirements must be set at compile time. Sometimes the term "inductive data type" is used for algebraic data types which are not necessarily recursive.
The arrays are heterogeneous: a single array can have keys of different types. PHP's associative arrays can be used to represent trees, lists, stacks, queues, and other common data structures not built into PHP. An associative array can be declared using the following syntax:
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically: f: [t[1], ..., t[k]] t: v f A forest f consists of a list of trees, while a tree t consists of a pair of a value v and a forest f (its children). This ...
The binary search algorithm is a method of searching a sorted array for a single element by cutting the array in half with each recursive pass. The trick is to pick a midpoint near the center of the array, compare the data at that point with the data being searched and then responding to one of three possible conditions: the data is found at ...
Since the append procedure must completely copy all of its arguments except the last, both its time and space complexity are O() for a list of elements. It may thus be a source of inefficiency if used injudiciously in code.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.