enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    Model compression (e.g. quantization and pruning of model parameters) can be applied to a deep neural network after it has been trained. [19] In the SqueezeNet paper, the authors demonstrated that a model compression technique called Deep Compression can be applied to SqueezeNet to further reduce the size of the parameter file from 5 MB to 500 ...

  3. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Image Classification, Object Detection, Video Deepfake Detection, [41] Image segmentation, [42] Anomaly detection, Image Synthesis, Cluster analysis, Autonomous Driving. [6] [7] ViT had been used for image generation as backbones for GAN [43] and for diffusion models (diffusion transformer, or DiT). [44]

  4. Medical open network for AI - Wikipedia

    en.wikipedia.org/wiki/Medical_open_network_for_AI

    MONAI Core image segmentation example. Pipeline from training data retrieval through model implementation, training, and optimization to model inference. Within MONAI Core, researchers can find a collection of tools and functionalities for dataset processing, loading, Deep learning (DL) model implementation, and evaluation. These utilities ...

  5. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.

  6. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]

  7. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    Image segmentation via spectral graph partitioning by LOBPCG with multigrid preconditioning has been first proposed in [53] and actually tested in [54] and. [55] The latter approach has been later implemented in Python scikit-learn [56] that uses LOBPCG from SciPy with algebraic multigrid preconditioning for solving the eigenvalue problem for ...

  8. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  9. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    The Transformers library is a Python package that contains open-source implementations of transformer models for text, image, and audio tasks. It is compatible with the PyTorch, TensorFlow and JAX deep learning libraries and includes implementations of notable models like BERT and GPT-2. [16]