enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of ...

  3. Flow (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_(mathematics)

    The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups. Specific examples of vector flows include the geodesic flow , the Hamiltonian flow , the Ricci flow , the mean curvature flow , and Anosov flows .

  4. Mean curvature flow - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature_flow

    The mean curvature flow extremalizes surface area, and minimal surfaces are the critical points for the mean curvature flow; minima solve the isoperimetric problem. For manifolds embedded in a Kähler–Einstein manifold , if the surface is a Lagrangian submanifold , the mean curvature flow is of Lagrangian type, so the surface evolves within ...

  5. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  6. Geometric flow - Wikipedia

    en.wikipedia.org/wiki/Geometric_flow

    The Ricci flow, Calabi flow, and Yamabe flow arise in this way (in some cases with normalizations). Curvature flows may or may not preserve volume (the Calabi flow does, while the Ricci flow does not), and if not, the flow may simply shrink or grow the manifold, rather than regularizing the metric. Thus one often normalizes the flow, for ...

  7. Manifold (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Manifold_(fluid_mechanics)

    Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...

  8. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    A manifold with boundary is a manifold with an edge. For example, a sheet of paper is a 2-manifold with a 1-dimensional boundary. The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary.

  9. Conformal Killing vector field - Wikipedia

    en.wikipedia.org/wiki/Conformal_Killing_vector_field

    In conformal geometry, a conformal Killing vector field on a manifold of dimension n with (pseudo) Riemannian metric (also called a conformal Killing vector, CKV, or conformal colineation), is a vector field whose (locally defined) flow defines conformal transformations, that is, preserve up to scale and preserve the conformal structure.