Search results
Results from the WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
State/Space theory constitutes a new branch of social and political geography in which the issues of space as a geographic element are considered for their influence on political relationships and outcomes. [1] Leading scholars include Neil Brenner at the Harvard Graduate School of Design, and Bob Jessop at Lancaster University in England ...
In discrete-time the transfer function is given in terms of the state-space parameters by + = and it is holomorphic in a disc centered at the origin. [4] In case 1/ z belongs to the resolvent set of A (which is the case on a possibly smaller disc centered at the origin) the transfer function equals D + C z ( I − z A ) − 1 B {\displaystyle D ...
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...
Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A , B , and C matrices which define the state-space realization. [ 4 ]
By a reduction of the model's associated state space dimension or degrees of freedom, an approximation to the original model is computed which is commonly referred to as a reduced order model. Reduced order models are useful in settings where it is often unfeasible to perform numerical simulations using the complete full order model.
The set of states forms a graph where two states are connected if there is an operation that can be performed to transform the first state into the second. State space search often differs from traditional computer science search methods because the state space is implicit: the typical state space graph is much too large to generate and store ...