enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Distributed parameter system - Wikipedia

    en.wikipedia.org/wiki/Distributed_parameter_system

    In discrete-time the transfer function is given in terms of the state-space parameters by + = and it is holomorphic in a disc centered at the origin. [4] In case 1/ z belongs to the resolvent set of A (which is the case on a possibly smaller disc centered at the origin) the transfer function equals D + C z ( I − z A ) − 1 B {\displaystyle D ...

  4. Hankel matrix - Wikipedia

    en.wikipedia.org/wiki/Hankel_matrix

    Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A , B , and C matrices which define the state-space realization. [ 4 ]

  5. Subspace identification method - Wikipedia

    en.wikipedia.org/wiki/Subspace_identification_method

    In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...

  6. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or

  7. Stochastic game - Wikipedia

    en.wikipedia.org/wiki/Stochastic_game

    The ingredients of a stochastic game are: a finite set of players ; a state space (either a finite set or a measurable space (,)); for each player , an action set (either a finite set or a measurable space (,)); a transition probability from , where = is the action profiles, to , where (,) is the probability that the next state is in given the current state and the current action profile ; and ...

  8. Quantum state space - Wikipedia

    en.wikipedia.org/wiki/Quantum_state_space

    In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.

  9. Robust control - Wikipedia

    en.wikipedia.org/wiki/Robust_control

    The early methods of Bode and others were fairly robust; the state-space methods invented in the 1960s and 1970s were sometimes found to lack robustness, [1] prompting research to improve them. This was the start of the theory of robust control, which took shape in the 1980s and 1990s and is still active today.