Search results
Results from the WOW.Com Content Network
Antonie Philips van Leeuwenhoek [note 2] FRS (/ ˈ ɑː n t ə n i v ɑː n ˈ l eɪ v ən h uː k,-h ʊ k / AHN-tə-nee vahn LAY-vən-hook, -huuk; Dutch: [ˈɑntoːni vɑn ˈleːu.ə(n)ˌɦuk] ⓘ; 24 October 1632 – 26 August 1723) was a Dutch microbiologist and microscopist in the Golden Age of Dutch science and technology.
1975 – Roberto Colella, Albert Overhauser, and Samuel Werner observe the quantum-mechanical phase shift of neutrons due to gravity. [194] Neutron interferometry was later used to test the principle of equivalence. [195] [196] [197] 1975 – Chandrasekhar and Steven Detweiler compute the effects of perturbations on a Schwarzschild black hole ...
Based on the principle of relativity, Henri Poincaré (1905, 1906), Hermann Minkowski (1908), and Arnold Sommerfeld (1910) tried to modify Newton's theory and to establish a Lorentz invariant gravitational law, in which the speed of gravity is that of light. As in Lorentz's model, the value for the perihelion advance of Mercury was much too low.
2017: Gravitational wave signal GW170817 is observed by the LIGO/Virgo collaboration. This is the first instance of a gravitational wave event observed to have a simultaneous electromagnetic signal when space telescopes like Hubble observed lights coming from the event, thereby marking a significant breakthrough for multi-messenger astronomy.
In physics, Hooke inferred that gravity obeys an inverse square law and arguably was the first to hypothesise such a relation in planetary motion, [19] [20] a principle Isaac Newton furthered and formalised in Newton's law of universal gravitation. [21] Priority over this insight contributed to the rivalry between Hooke and Newton.
Tests of general relativity serve to establish observational evidence for the theory of general relativity.The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift.
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]