enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century.

  4. Tangent–secant theorem - Wikipedia

    en.wikipedia.org/wiki/Tangentsecant_theorem

    The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.

  5. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Tangent line at (x 0, f(x 0)). The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a ...

  7. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  8. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The orange line is tangent to =, meaning at that exact point, the slope of the curve and the straight line are the same. The derivative at different points of a differentiable function The derivative of f ( x ) {\displaystyle f(x)} at the point x = a {\displaystyle x=a} is the slope of the tangent to ( a , f ( a ) ) {\displaystyle (a,f(a))} . [ 3 ]