Search results
Results from the WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in finding the confidence interval for estimating the population standard deviation of a normal distribution from a sample standard ...
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
The "step" line relates to Chi-Square test on the step level while variables included in the model step by step. Note that in the output a step chi-square, is the same as the block chi-square since they both are testing the same hypothesis that the tested variables enter on this step are non-zero.
1900: Karl Pearson develops the chi squared test to determine "whether a given form of frequency curve will effectively describe the samples drawn from a given population." Thus the null hypothesis is that a population is described by some distribution predicted by theory.
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5.
There are several methods to derive chi-squared distribution with 2 degrees of freedom. Here is one based on the distribution with 1 degree of freedom.
The significance of the difference between the two proportions can be assessed with a variety of statistical tests including Pearson's chi-squared test, the G-test, Fisher's exact test, Boschloo's test, and Barnard's test, provided the entries in the table represent individuals randomly sampled from the population about which conclusions are to ...