Search results
Results from the WOW.Com Content Network
sizeof can be used to determine the number of elements in an array, by dividing the size of the entire array by the size of a single element. This should be used with caution; When passing an array to another function, it will "decay" to a pointer type. At this point, sizeof will return the size of the pointer, not the total size of the array.
size_t is an unsigned integer type used to represent the size of any object (including arrays) in the particular implementation. The operator sizeof yields a value of the type size_t . The maximum size of size_t is provided via SIZE_MAX , a macro constant which is defined in the < stdint.h > header ( cstdint header in C++).
An array with stride of exactly the same size as the size of each of its elements is contiguous in memory. Such arrays are sometimes said to have unit stride . Unit stride arrays are sometimes more efficient than non-unit stride arrays, but non-unit stride arrays can be more efficient for 2D or multi-dimensional arrays , depending on the ...
Therefore, although function calls in C use pass-by-value semantics, arrays are in effect passed by reference. The total size of an array x can be determined by applying sizeof to an expression of array type. The size of an element can be determined by applying the operator sizeof to any dereferenced element of an array A, as in n = sizeof A[0].
In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.
In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter. Elements of a newly created array may have undefined values (as in C), or may be defined to have a specific "default" value such as 0 or a null pointer (as in Java).
C has the ability to initialize arrays of arbitrary length. The sizeof operator can be used to obtain the size of a statically initialized array in C code. For instance, in the following code, the terminating index for the loop automatically adjusts should the list of strings be changed.
A fixed-size array will suffice in applications where the maximum logical size is fixed (e.g. by specification), or can be calculated before the array is allocated. A dynamic array might be preferred if: the maximum logical size is unknown, or difficult to calculate, before the array is allocated