Search results
Results from the WOW.Com Content Network
A hidden Markov model (HMM) is a Markov model in which the observations are dependent on a latent (or hidden) Markov process (referred to as ). An HMM requires that there be an observable process Y {\displaystyle Y} whose outcomes depend on the outcomes of X {\displaystyle X} in a known way.
A profile hidden Markov model (HMM) modelling a multiple sequence alignment. A hidden Markov model (HMM) is a probabilistic model that can assign likelihoods to all possible combinations of gaps, matches, and mismatches, to determine the most likely MSA or set of possible MSAs. HMMs can produce a single highest-scoring output but can also ...
A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.
The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions ::=, …,, i.e. it computes, for all hidden state variables {, …,}, the distribution ( | :).
The goal of the segmentation problem is to infer the hidden state at each time, as well as the parameters describing the emission distribution associated with each hidden state. Hidden state sequence and emission distribution parameters can be learned using the Baum-Welch algorithm, which is a variant of expectation maximization applied to HMMs ...
In an HMM, the state process is not directly observed – it is a 'hidden' (or 'latent') variable – but observations are made of a state‐dependent process (or observation process) that is driven by the underlying state process (and which can thus be regarded as a noisy measurement of the system states of interest). [7]
The following picture presents a Bayesian network of a HMM. Hidden Markov model. Because of the Markov assumption, the probability of the current true state given the immediately previous one is conditionally independent of the other earlier states.
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]