enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.

  5. First-order second-moment method - Wikipedia

    en.wikipedia.org/wiki/First-order_second-moment...

    In probability theory, the first-order second-moment (FOSM) method, also referenced as mean value first-order second-moment (MVFOSM) method, is a probabilistic method to determine the stochastic moments of a function with random input variables

  6. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}

  7. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    The Poisson process model for jumps is that the probability of one jump in the interval [t, t + Δt] is hΔt plus higher order terms. h could be a constant, a deterministic function of time, or a stochastic process. The survival probability p s (t) is the probability that no jump has occurred in the interval [0, t]. The change in the survival ...

  8. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Download as PDF; Printable version; ... Probability, thermodynamics, digital communications ... which converges more rapidly for all real values of x than a Taylor ...

  9. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    In fact, for a smooth enough function, we have the similar Taylor expansion (+) = | | ()! + (,), where the last term (the remainder) depends on the exact version of Taylor's formula.