Search results
Results from the WOW.Com Content Network
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.
In probability theory, the first-order second-moment (FOSM) method, also referenced as mean value first-order second-moment (MVFOSM) method, is a probabilistic method to determine the stochastic moments of a function with random input variables
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}
The Poisson process model for jumps is that the probability of one jump in the interval [t, t + Δt] is hΔt plus higher order terms. h could be a constant, a deterministic function of time, or a stochastic process. The survival probability p s (t) is the probability that no jump has occurred in the interval [0, t]. The change in the survival ...
Download as PDF; Printable version; ... Probability, thermodynamics, digital communications ... which converges more rapidly for all real values of x than a Taylor ...
In fact, for a smooth enough function, we have the similar Taylor expansion (+) = | | ()! + (,), where the last term (the remainder) depends on the exact version of Taylor's formula.