Search results
Results from the WOW.Com Content Network
The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kazimierz Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]
In these cases the polarization energy E pol associated with ions on polar lattice sites may be included in the Born–Haber cycle. As an example, one may consider the case of iron-pyrite FeS 2 . It has been shown that neglect of polarization led to a 15% difference between theory and experiment in the case of FeS 2 , whereas including it ...
A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of how an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle. In World War I he was originally placed as a radio operator, but his specialist knowledge led to his being moved to research duties on sound ranging.
The Born–Haber cycle, an approach to analyze reaction energies, is developed by German scientists Max Born and Fritz Haber. Sydney Chapman and David Enskog systematically develop a kinetic theory of gases. Jan Czochralski invents a method for growing single crystals of metals.
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
The book was originally started by Born in c. 1940, and was finished in the 1950s by Huang in consultation with Born. The text is considered a classical treatise on the subject of lattice dynamics, phonon theory, and elasticity in crystalline solids, but excluding metals and other complex solids with order/disorder phenomena.
[7] [8] [9] Haber also, along with Max Born, proposed the Born–Haber cycle as a method for evaluating the lattice energy of an ionic solid. Haber, a known German nationalist, is also considered the "father of chemical warfare" for his years of pioneering work developing and weaponizing chlorine and other poisonous gases during World War I.