Search results
Results from the WOW.Com Content Network
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels.Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar ...
Electrophoresis is a laboratory technique in which the blood serum (the fluid portion of the blood after the blood has clotted) is applied to either an acetate membrane soaked in a liquid buffer, [3] or to a buffered agarose gel matrix, or into liquid in a capillary tube, and exposed to an electric current to separate the serum protein ...
Microfluidic Sanger sequencing is a lab-on-a-chip application for DNA sequencing, in which the Sanger sequencing steps (thermal cycling, sample purification, and capillary electrophoresis) are integrated on a wafer-scale chip using nanoliter-scale sample volumes. This technology generates long and accurate sequence reads, while obviating many ...
The data is plotted with time, shown via base pairs (bps), on the x-axis and fluorescence intensity on the y-axis. Such plots are often achieved using an instrument such as an automated DNA sequencer paired with capillary electrophoresis (CE). Such electropherograms may be used to determine DNA sequence genotypes, or genotypes that are based on ...
[1] [2] Capillary electrochromatography is a combination of two analytical techniques, high-performance liquid chromatography and capillary electrophoresis. Capillary electrophoresis aims to separate analytes on the basis of their mass-to-charge ratio by passing a high voltage across ends of a capillary tube , which is filled with the analyte.
During electrophoresis in a discontinuous gel system, an ion gradient is formed in the early stage of electrophoresis that causes all of the proteins to focus into a single sharp band. The formation of the ion gradient is achieved by choosing a pH value at which the ions of the buffer are only moderately charged compared to the SDS-coated proteins.
The original interface between capillary zone electrophoresis and mass spectrometry was developed in 1987 [9] by Richard D. Smith and coworkers at Pacific Northwest National Laboratory, and who also later were involved in development of interfaces with other CE variants, including capillary isotachophoresis and capillary isoelectric focusing.
Individual instruments, of a particular model type, have also been known to differ in performance (e.g. differences among various ABI 310 units, all of the same model). Capillary electrophoresis instruments generally provide better resolution compared gel-based systems, as well having better sensitivity.