enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Austempering - Wikipedia

    en.wikipedia.org/wiki/Austempering

    In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce / eliminate distortion. Austempering is defined by both the process and the resultant microstructure.

  3. Acicular ferrite - Wikipedia

    en.wikipedia.org/wiki/Acicular_ferrite

    This microstructure is advantageous over other microstructures for steel because of its chaotic ordering, which increases toughness. [ 1 ] Acicular ferrite is formed in the interior of the original austenitic grains by direct nucleation on the inclusions, resulting in randomly oriented short ferrite needles with a 'basket weave' appearance.

  4. Pearlite - Wikipedia

    en.wikipedia.org/wiki/Pearlite

    Eutectoid steel can in principle be transformed completely into pearlite; hypoeutectoid steels can also be completely pearlitic if transformed at a temperature below the normal eutectoid. [6] [7] Pearlite can be hard and strong but is not particularly tough. It can be wear-resistant because of a strong lamellar network of ferrite and cementite.

  5. Bainite - Wikipedia

    en.wikipedia.org/wiki/Bainite

    Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C (depending on alloy content). [1] First described by E. S. Davenport and Edgar Bain, [2] [3] it is one of the products that may form when austenite (the face-centered cubic crystal structure of iron) is cooled past a temperature where it is no longer thermodynamically stable with respect to ferrite ...

  6. Alloy steel - Wikipedia

    en.wikipedia.org/wiki/Alloy_steel

    The properties of steel depend on its microstructure: the arrangement of different phases, some harder, some with greater ductility. At the atomic level, the four phases of auto steel include martensite (the hardest yet most brittle), bainite (less hard), ferrite (more ductile), and austenite (the most ductile). The phases are arranged by ...

  7. Microstructure - Wikipedia

    en.wikipedia.org/wiki/Microstructure

    Metallography allows the metallurgist to study the microstructure of metals. A micrograph of bronze revealing a cast dendritic structure Al-Si microstructure. Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. [1]

  8. TWIP steel - Wikipedia

    en.wikipedia.org/wiki/TWIP_steel

    TWIP steels have mostly high content in Mn (above 20% in weight %) and small additions of elements such C (<1 wt.%), Si (<3 wt.%), or Al (<3 wt.%). The steels have low stacking fault energy (between 20 and 40 mJ/m 2) at room temperature. Although the details of the mechanisms controlling strain-hardening in TWIP steels are still unclear, the ...

  9. Dual-phase steel - Wikipedia

    en.wikipedia.org/wiki/Dual-phase_steel

    Virtually generated microstructure of dual-phase steel. [1]Dual-phase steel (DP steel) is a high-strength steel that has a ferritic–martensitic microstructure. DP steels are produced from low or medium carbon steels that are quenched from a temperature above A 1 but below A 3 determined from continuous cooling transformation diagram.