Search results
Results from the WOW.Com Content Network
This relation is intransitive since, for example, 2 R 6 (2 is a divisor of 6) and 6 R 3 (6 is a multiple of 3), but 2 is neither a multiple nor a divisor of 3. This does not imply that the relation is antitransitive (see below); for example, 2 R 6, 6 R 12, and 2 R 12 as well. An example in biology comes from the food chain.
The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...
The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]
For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.
[1] [2] An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]