enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members. Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for ...

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory. This vibrating glass beam may be modeled as a cantilever beam with acceleration, variable linear density, variable section modulus, some kind of dissipation, springy end loading, and possibly a point mass at the free end. Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory ...

  4. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    The farther a given amount of material is from the neutral axis, the larger is the section modulus and hence a larger bending moment can be resisted. When designing a symmetric I-beam to resist stresses due to bending the usual starting point is the required section modulus. If the allowable stress is σ max and the maximum expected bending ...

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a ...

  6. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1][2][3] early in the 20th century. [4][5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high- frequency ...

  7. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The cross-section of the column is uniform throughout its length. The direct stress is very small as compared to the bending stress (the material is compressed only within the elastic range of strains). The length of the column is very large as compared to the cross-sectional dimensions of the column. The column fails only by buckling.

  8. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The four-point flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam ...

  9. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    Beam (structure) A statically determinate beam, bending (sagging) under a uniformly distributed load. A beam is a structural element that primarily resists loads applied laterally across the beam's axis (an element designed to carry a load pushing parallel to its axis would be a strut or column). Its mode of deflection is primarily by bending ...