enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...

  3. Yield surface - Wikipedia

    en.wikipedia.org/wiki/Yield_surface

    The formula reduces to the Tresca criterion if =. Figure 5 shows Mohr–Coulomb yield surface in the three-dimensional space of principal stresses. It is a conical prism and determines the inclination angle of conical surface. Figure 6 shows Mohr–Coulomb yield surface in two-dimensional stress space.

  4. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of projection with the same velocity.

  5. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...

  6. Factor of safety - Wikipedia

    en.wikipedia.org/wiki/Factor_of_safety

    The yield calculation will determine the safety factor until the part starts to deform plastically. The ultimate calculation will determine the safety factor until failure. In brittle materials the yield and ultimate strengths are often so close as to be indistinguishable, so it is usually acceptable to only calculate the ultimate safety factor.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    This procedure does increase the number of equations to solve compared to Newton's laws, from 3N to 3N + C, because there are 3N coupled second-order differential equations in the position coordinates and multipliers, plus C constraint equations. However, when solved alongside the position coordinates of the particles, the multipliers can yield ...

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  9. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    The parameters (,,,) obtained from a test result can be used with these formulas to calculate the equivalent true stress ´ at failure. Specimen shape effect The graph of specimen shape effect shows how the ratio of true stress to engineering stress (σ´/σ e ) varies with the aspect ratio of the test specimen ( d o / l o {\textstyle d_{o}/l ...