Search results
Results from the WOW.Com Content Network
That the function g is injective implies that given some equality of the form a ∗ x = b, where the only unknown is x, there is only one possible value of x satisfying the equality. More precisely, we are able to define some function f, the inverse of g, such that for all x f(g(x)) = f(a ∗ x) = x.
Sometimes multiplication and division are given equal precedence, or sometimes multiplication is given higher precedence than division; see § Mixed division and multiplication below. If each subtraction is replaced with addition of the opposite (additive inverse), then the associative and commutative laws of addition allow terms to be added in ...
The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25).
An homomorphism of algebraic structures is an isomorphism if and only if it is a bijection. The inverse of a bijection is called an inverse function. In the other cases, one talks of inverse isomorphisms. A function has a left inverse or a right inverse if and only it is injective or surjective, respectively. An homomorphism of algebraic ...
Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function = , then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:
When a commutative operation is written as a binary function = (,), then this function is called a symmetric function, and its graph in three-dimensional space is symmetric across the plane =. For example, if the function f is defined as f ( x , y ) = x + y {\displaystyle f(x,y)=x+y} then f {\displaystyle f} is a symmetric function.
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
Benford's law is an observation that in many real-life sets of numerical data, the leading digit is likely to be small. [21] In sets that obey the law, the number 1 appears as the leading significant digit about 30% of the time, while 9 appears as the leading significant digit less than 5% of the time.