Search results
Results from the WOW.Com Content Network
The total inflow of energy into a system must equal the total outflow of energy from the system, plus the change in the energy contained within the system. Whenever one measures (or calculates) the total energy of a system of particles whose interactions do not depend explicitly on time, it is found that the total energy of the system always ...
The component of total energy transfer that accompanies the transfer of vapor into the surrounding subsystem is customarily called 'latent heat of evaporation', but this use of the word heat is a quirk of customary historical language, not in strict compliance with the thermodynamic definition of transfer of energy as heat.
If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The establishment of the concept of internal energy distinguishes the ...
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. [1] In the case of a closed system, the principle says that the total amount of energy within the system can only be changed through energy entering or leaving the system.
Total final consumption (TFC) is the worldwide consumption of energy by end-users (whereas primary energy consumption (Eurostat) [24] or total energy supply (IEA) is total energy demand and thus also includes what the energy sector uses itself and transformation and distribution losses). This energy consists of fuel (78%) and electricity (22%).
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
The International Recommendations for Energy Statistics (IRES) prefers total energy supply (TES) to refer to this indicator. [4] These expressions are often used to describe the total energy supply of a national territory. Secondary energy is a carrier of energy, such as electricity. These are produced by conversion from a primary energy source.
The total energy density U can be similarly calculated, except the integration is over the whole sphere and there is no cosine, and the energy flux (U c) should be divided by the velocity c to give the energy density U: = (,) Thus / is replaced by , giving an extra factor of 4.