Search results
Results from the WOW.Com Content Network
A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Calculators are simple tool for the classroom and beyond. Here are our top picks for students and accountants alike. ... These Calculators Make Quick Work of Standard Math, Accounting Problems ...
Binomial (polynomial), a polynomial with two terms; Binomial coefficient, numbers appearing in the expansions of powers of binomials; Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition; Binomial theorem, a theorem about powers of binomials; Binomial type, a property of sequences of polynomials; Binomial series, a ...
A binomial number is an integer obtained by evaluating a homogeneous polynomial containing two terms, also called a binomial. The form of this binomial is x n ± y n {\displaystyle x^{n}\!\pm y^{n}} , with x > y {\displaystyle x>y} and n > 1 {\displaystyle n>1} .
Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring , and therefore x {\displaystyle x} can be taken to be, for example, a complex number , including negative integers, or a polynomial with complex coefficients, or any complex-valued ...