Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
When subjected to denaturing factors like increased heat or chemicals like formamide in low levels, DNA is partially denatured in a predictable pattern based on its nucleotide content in different regions. [1] This allows unique fingerprints or ‘barcodes' to be generated for molecules with different sequences not unlike restriction mapping.
Denaturation may refer to: . Denaturation (biochemistry), a structural change in macromolecules caused by extreme conditions Denaturation (fissile materials), transforming fissile materials so that they cannot be used in nuclear weapons
Although stress response pathways are mediated in different ways depending on the stressor involved, cell type, etc., a general characteristic of many pathways – especially ones where heat is the principal stressor – is that they are initiated by the presence and detection of denatured proteins. Because conditions such as high temperatures ...
Nucleic acids are often denatured by including urea in the buffer, while proteins are denatured using sodium dodecyl sulfate, usually as part of the SDS-PAGE process. For full denaturation of proteins, it is also necessary to reduce the covalent disulfide bonds that stabilize their tertiary and quaternary structure , a method called reducing PAGE.
Hyperchromicity can be used to track the condition of DNA as temperature changes. The transition/melting temperature (T m) is the temperature where the absorbance of UV light is 50% between the maximum and minimum, i.e. where 50% of the DNA is denatured. A ten fold increase of monovalent cation concentration increases the temperature by 16.6 °C.
Melting curve analysis is an assessment of the dissociation characteristics of double-stranded DNA during heating. As the temperature is raised, the double strand begins to dissociate leading to a rise in the absorbance intensity, hyperchromicity.
The procedure involves heating a sample of genomic DNA until it denatures into the single stranded-form, and then slowly cooling it, so the strands can pair back together.