Search results
Results from the WOW.Com Content Network
Ultimate loss amounts are necessary for determining an insurance company's carried reserves. They are also useful for determining adequate insurance premiums, when loss experience is used as a rating factor [4] [5] [6] Loss development factors are used in all triangular methods of loss reserving, [7] such as the chain-ladder method.
Select tail factor; Calculate cumulative claim development factors; Project ultimate claims; Age-to-age factors, also called loss development factors (LDFs) or link ratios, represent the ratio of loss amounts from one valuation date to another, and they are intended to capture growth patterns of losses over time. These factors are used to ...
In the second approach, reported (or paid) losses are first developed to ultimate using a chain-ladder approach and applying a loss development factor (LDF). Next, the chain-ladder ultimate is multiplied by an estimated percent reported. Finally, expected losses multiplied by an estimated percent unreported are added (as in the first approach).
It is accomplished by loss of one or more electrons. The atom whose oxidation number decreases gains (receives) one or more electrons and is said to be reduced. This relation can be remembered by the following mnemonics. Leo says Ger! or Leo the lion, Ger! can be used to represent Loss of electron is oxidation; Gain of electron is reduction ...
A ternary plot, ternary graph, triangle plot, simplex plot, or Gibbs triangle is a barycentric plot on three variables which sum to a constant. [1] It graphically depicts the ratios of the three variables as positions in an equilateral triangle .
Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with the correct orientation, only a certain amount of collisions result in a perceptible or notable change; these successful changes are called successful collisions.
The Taft equation is a linear free energy relationship (LFER) used in physical organic chemistry in the study of reaction mechanisms and in the development of quantitative structure–activity relationships for organic compounds. It was developed by Robert W. Taft in 1952 [2] [3] [4] as a modification to the Hammett equation. [5]
In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour ...