enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent potential temperature - Wikipedia

    en.wikipedia.org/wiki/Equivalent_potential...

    So cool air lying on top of warm air can be stable, as long as the temperature decrease with height is less than the adiabatic lapse rate; the dynamically important quantity is not the temperature, but the potential temperature—the temperature the air would have if it were brought adiabatically to a reference pressure. The air around the ...

  3. Thermal velocity - Wikipedia

    en.wikipedia.org/wiki/Thermal_velocity

    Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution . Note that in the strictest sense thermal velocity is not a velocity , since velocity usually describes a vector rather than simply a scalar speed .

  4. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    The temperature of a muscle has a significant effect on the velocity and power of the muscle contraction, with performance generally declining with decreasing temperatures and increasing with rising temperatures. The Q 10 coefficient represents the degree of temperature dependence a muscle exhibits as measured by contraction rates. [2]

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation , where N is the quantity and λ ( lambda ) is a positive rate called the exponential decay constant , disintegration constant , [ 1 ] rate constant , [ 2 ] or ...

  6. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    Various authors have correlated charts and graphs for different geometries and flow conditions. For flow parallel to a plane surface, where x {\displaystyle x} is the distance from the edge and L {\displaystyle L} is the height of the boundary layer, a mean Nusselt number can be calculated using the Colburn analogy .

  7. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases , to empirical correlations for liquids.

  8. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The change in pressure over distance dx is dp and flow velocity v = ⁠ dx / dt ⁠. Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is −A dp. If the pressure decreases along the length of the pipe, dp is negative but the force resulting in flow is positive ...

  9. Lapse rate - Wikipedia

    en.wikipedia.org/wiki/Lapse_rate

    The environmental lapse rate (ELR), is the actual rate of decrease of temperature with altitude in the atmosphere at a given time and location. [6]The ELR is the observed lapse rate, and is to be distinguished from the adiabatic lapse rate which is a theoretical construct.