Search results
Results from the WOW.Com Content Network
it is a version without text of the File:Diagram human cell nucleus.svg: Date: 17 jun 2006 (original 27 april 2006) Source: edited with adobe ilustrator: Author: Mariana LadyofHats: Permission (Reusing this file)
If the nucleus is assumed to be spherically symmetric, an approximate relationship between nuclear radius and mass number arises above A=40 from the formula R=R o A 1/3 with R o = 1.2 ± 0.2 fm. [6] R is the predicted spherical nuclear radius, A is the mass number, and R o is a constant determined by experimental
The number of nucleons in the nucleus must be smaller than the number of available states, otherwise the nucleus cannot hold all of its nucleons. There are thus several ways to choose Z (or N) states among the n possible. In combinatorial mathematics, the number of choices of Z objects among n is the binomial coefficient C Z n.
Diagram of the nucleus showing the ribosome-studded outer nuclear membrane, nuclear pores, DNA (complexed as chromatin), and the nucleolus. The nucleus contains nearly all of the cell's DNA , surrounded by a network of fibrous intermediate filaments called the nuclear matrix , and is enveloped in a double membrane called the nuclear envelope .
A model of an atomic nucleus showing it as a compact bundle of protons (red) and neutrons (blue), the two types of nucleons.In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics.
A comprehensive diagram of a human cell nucleus. Date: 27 April 2006: Source: I did it myself with adobe ilustrator using the information found here , ,, and : Author: Mariana Ruiz LadyofHats: Permission (Reusing this file)
The atomic nucleus shown expanded more than 10,000 times its size relative to the atom; electrons have no measurable diameter. The Rutherford model is a name for the first model of an atom with a compact nucleus. The concept arose from Ernest Rutherford discovery of the nucleus.
Therefore, a nucleus with an even number of protons and an even number of neutrons has 0 spin and positive parity. A nucleus with an even number of protons and an odd number of neutrons (or vice versa) has the parity of the last neutron (or proton), and the spin equal to the total angular momentum of this neutron (or proton).