Search results
Results from the WOW.Com Content Network
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.
The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.
Local geometry: This relates to the curvature of the universe, primarily concerning what we can observe. Global geometry: This pertains to the universe's overall shape and structure. The observable universe (of a given current observer) is a roughly spherical region extending about 46 billion light-years in all directions (from that observer ...
Let the number of spatial dimensions be N and the number of temporal dimensions be T. That N = 3 and T = 1, setting aside the compactified dimensions invoked by string theory and undetectable to date, can be explained by appealing to the physical consequences of letting N differ from 3 and T differ from 1. The argument is often of an anthropic ...
For example, the dimension of a point is zero; the dimension of a line is one, as a point can move on a line in only one direction (or its opposite); the dimension of a plane is two, etc. The dimension is an intrinsic property of an object, in the sense that it is independent of the dimension of the space in which the object is or can be embedded .
A polytope in seven dimensions is called a 7-polytope. The most studied are the regular polytopes, of which there are only three in seven dimensions: the 7-simplex, 7-cube, and 7-orthoplex. A wider family are the uniform 7-polytopes, constructed from fundamental symmetry domains of reflection, each domain defined by a Coxeter group.
Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or in the later "geometrical conception of place" as "space qua extension" in the ...
Pietronero argues that the universe shows a definite fractal aspect over a fairly wide range of scale, with a fractal dimension of about 2. [3] The fractal dimension of a homogeneous 3D object would be 3, and 2 for a homogeneous surface, whilst the fractal dimension for a fractal surface is between 2 and 3.