Search results
Results from the WOW.Com Content Network
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
Indeed, a graph has treewidth at most 2 if and only if it has branchwidth at most 2, if and only if every biconnected component is a series–parallel graph. [4] [5] The maximal series–parallel graphs, graphs to which no additional edges can be added without destroying their series–parallel structure, are exactly the 2-trees.
The expression series-parallel can apply to different domains: Series and parallel circuits for electrical circuits and electronic circuits; Series-parallel partial order, in partial order theory; Series–parallel graph in graph theory; Series–parallel networks problem, a combinatorial problem about series–parallel graphs
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
The Basics of Physics, Greenwood Publishing Group, 2006 ISBN 0313328579. Paynter, Henry M., Analysis and Design of Engineering Systems, MIT Press, 1961 OCLC 1670711. Radmanesh, Matthew M., Electronic Waves & Transmission Line Circuit Design, Author House, 2011 ISBN 1456752324.