enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.

  3. Isotopes of iodine - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_iodine

    Iodine-124 can be made by numerous nuclear reactions via a cyclotron. The most common starting material used is 124 Te. Iodine-124 as the iodide salt can be used to directly image the thyroid using positron emission tomography (PET). [9] Iodine-124 can also be used as a PET radiotracer with a usefully longer half-life compared with fluorine-18 ...

  4. Radioisotope renography - Wikipedia

    en.wikipedia.org/wiki/Radioisotope_renography

    The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...

  5. Iodine - Wikipedia

    en.wikipedia.org/wiki/Iodine

    Iodine is the fourth halogen, being a member of group 17 in the periodic table, below fluorine, chlorine, and bromine; since astatine and tennessine are radioactive, iodine is the heaviest stable halogen. Iodine has an electron configuration of [Kr]5s 2 4d 10 5p 5, with the seven electrons in the fifth and outermost shell being its valence ...

  6. Iodine-129 - Wikipedia

    en.wikipedia.org/wiki/Iodine-129

    Iodine-129 (129 I) is a long-lived radioisotope of iodine that occurs naturally but is also of special interest in the monitoring and effects of man-made nuclear fission products, where it serves as both a tracer and a potential radiological contaminant.

  7. Plummer effect - Wikipedia

    en.wikipedia.org/wiki/Plummer_effect

    Unlike the Wolff–Chaikoff effect, the Plummer effect does not prevent the thyroid from taking up radioactive iodine, e.g. in the case of nuclear emergencies.Therefore, "plummering" with high-dose iodine is only effective in a short time window after the release of radionuclides. [9]

  8. Iodine-125 - Wikipedia

    en.wikipedia.org/wiki/Iodine-125

    Iodine-125 (125 I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.

  9. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).