enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.

  3. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).

  4. EWMA chart - Wikipedia

    en.wikipedia.org/wiki/EWMA_chart

    The EWMA chart is sensitive to small shifts in the process mean, but does not match the ability of Shewhart-style charts (namely the ¯ and R and ¯ and s charts) to detect larger shifts. [ 2 ] : 412 One author recommends superimposing the EWMA chart on top of a suitable Shewhart-style chart with widened control limits in order to detect both ...

  5. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]

  6. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    A solution to this problem is to use an alternate design strategy, e.g. stratified sampling. Weighting, when correctly applied, can potentially improve the efficiency and reduce the bias of unweighted estimators. One very early weighted estimator is the Horvitz–Thompson estimator of the mean. [3]

  7. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    In statistics, inverse-variance weighting is a method of aggregating two or more random variables to minimize the variance of the weighted average. Each random variable is weighted in inverse proportion to its variance (i.e., proportional to its precision). Given a sequence of independent observations y i with variances σ i 2, the inverse ...

  8. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  9. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean.. Given a sample = (, …,) and weights = (,, …,), it is calculated as: [1]