Search results
Results from the WOW.Com Content Network
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In the msbit-first example, the remainder polynomial is + +. Converting to a hexadecimal number using the convention that the highest power of x is the msbit; this is A2 16 . In the lsbit-first, the remainder is x 7 + x 4 + x 3 {\displaystyle x^{7}+x^{4}+x^{3}} .
After each step k of the Euclidean algorithm, the norm of the remainder f(r k) is smaller than the norm of the preceding remainder, f(r k−1). Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [ 144 ]
This matrix is a Vandermonde matrix over . In other words, the Reed–Solomon code is a linear code , and in the classical encoding procedure, its generator matrix is A {\displaystyle A} . Systematic encoding procedure: The message as an initial sequence of values
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The finite field with p n elements is denoted GF(p n) and is also called the Galois field of order p n, in honor of the founder of finite field theory, Évariste Galois.GF(p), where p is a prime number, is simply the ring of integers modulo p.