enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  3. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  4. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    If diverges and converges, then necessarily =, that is, =. The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .

  5. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.

  6. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    If X n converges in probability to X, and if P(| X n | ≤ b) = 1 for all n and some b, then X n converges in rth mean to X for all r ≥ 1. In other words, if X n converges in probability to X and all random variables X n are almost surely bounded above and below, then X n converges to X also in any rth mean. [10] Almost sure representation ...

  7. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Example 2: The power series for g(z) = −ln(1 − z), expanded around z = 0, which is =, has radius of convergence 1, and diverges for z = 1 but converges for all other points on the boundary. The function f(z) of Example 1 is the derivative of g(z). Example 3: The power series

  8. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The test works because the space of real numbers and the space of complex numbers (with the metric given by the absolute value) are both complete.From here, the series is convergent if and only if the partial sums

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges. Agnew's theorem characterizes rearrangements that preserve convergence for all series.