enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Time dilation was used in the Doctor Who episodes "World Enough and Time" and "The Doctor Falls", which take place on a spaceship in the vicinity of a black hole. Due to the immense gravitational pull of the black hole and the ship's length (400 miles), time moves faster at one end than the other.

  4. Kerr–Newman metric - Wikipedia

    en.wikipedia.org/wiki/Kerr–Newman_metric

    The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell ...

  5. Ferocious black holes reveal 'time dilation' in early universe

    www.aol.com/news/ferocious-black-holes-reveal...

    Scientists made that point anew on Monday in a study that used observations of a ferocious class of black holes called quasars to demonstrate "time dilation" in the early universe, showing how ...

  6. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Fig 4–2. Relativistic time dilation, as depicted in a single Loedel spacetime diagram. Both observers consider the clock of the other as running slower. Relativistic time dilation refers to the fact that a clock (indicating its proper time in its rest frame) that moves relative to an observer is observed to run slower. The situation is ...

  7. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    Geodesic of a photon emitted from a light source located on the event horizon of a black hole and back to it, with an impact parameter > =. Geodesic of a photon emitted from a light source located on the event horizon of a black hole, with an impact parameter b = b c r i t = 3 3 2 r s {\displaystyle b=b_{crit}={\frac {3{\sqrt {3}}}{2}}r_{s ...

  8. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  9. Reissner–Nordström metric - Wikipedia

    en.wikipedia.org/wiki/Reissner–Nordström_metric

    Black holes with 2r Q > r s cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative). [9] Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display a ...