Search results
Results from the WOW.Com Content Network
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
Common logarithms (base 10), historically used in logarithm tables and slide rules, are a basic tool for measurement and computation in many areas of science and engineering; in these contexts log x still often means the base ten logarithm. [10] In mathematics log x usually refers to the natural logarithm (base e). [11]
Four powers of 10 spanning a range of three decades: 1, 10, 100, 1000 (10 0, 10 1, 10 2, 10 3) Four grids spanning three decades of resolution: One thousand 0.001s, one-hundred 0.01s, ten 0.1s, one 1. One decade (symbol dec [1]) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two ...
From Wikipedia, the free encyclopedia. Redirect page
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
He then called the logarithm, with this number as base, the natural logarithm. As noted by Howard Eves, "One of the anomalies in the history of mathematics is the fact that logarithms were discovered before exponents were in use." [16] Carl B. Boyer wrote, "Euler was among the first to treat logarithms as exponents, in the manner now so ...