Search results
Results from the WOW.Com Content Network
When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of neurotransmitter molecules that open ion channels in the post-synaptic neuron (bottom). The combined excitatory and inhibitory postsynaptic potentials of such inputs can begin a new action potential in the post-synaptic neuron.
In electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience , threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS).
Afterhyperpolarization, or AHP, is the hyperpolarizing phase of a neuron's action potential where the cell's membrane potential falls below the normal resting potential. This is also commonly referred to as an action potential's undershoot phase. AHPs have been segregated into "fast", "medium", and "slow" components that appear to have distinct ...
The function of the active zone is to ensure that neurotransmitters can be reliably released in a specific location of a neuron and only released when the neuron fires an action potential. [2] As an action potential propagates down an axon it reaches the axon terminal called the presynaptic bouton. In the presynaptic bouton, the action ...
In Greek, the root rhe translates to "current or flow", and basi means "bottom or foundation": thus the rheobase is the minimum current that will produce an action potential or muscle contraction. Rheobase can be best understood in the context of the strength-duration relationship (Fig. 1). [2]
Fig. 1. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact ...
In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential , caused by the flow of positively charged ions into the postsynaptic cell, is a result of opening ligand-gated ion ...
EPSPs are caused by the influx of Na + or Ca 2+ from the extracellular space into the neuron or muscle cell. When the presynaptic neuron has an action potential, Ca 2+ enters the axon terminal via voltage-dependent calcium channels and causes exocytosis of synaptic vesicles, causing neurotransmitter to be released. The transmitter diffuses ...