Search results
Results from the WOW.Com Content Network
Walter and Turner found that, on average, prediction of RNA structure improved from 67% to 74% accuracy when coaxial stacking contributions were included. [23] Most well-studied RNA tertiary structures contain examples of coaxial stacking. Some prominent examples are tRNA-Phe, group I introns, group II introns, and ribosomal RNAs.
Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.
Structure of a hammerhead ribozyme, a ribozyme that cuts RNA. Messenger RNA (mRNA) is the type of RNA that carries information from DNA to the ribosome, the sites of protein synthesis (translation) in the cell cytoplasm. The coding sequence of the mRNA determines the amino acid sequence in the protein that is produced. [27]
The cloverleaf structure becomes the 3D L-shaped structure through coaxial stacking of the helices, which is a common RNA tertiary structure motif. The lengths of each arm, as well as the loop 'diameter', in a tRNA molecule vary from species to species. [6] [7] The tRNA structure consists of the following:
Although ribozymes are quite rare in most cells, their roles are sometimes essential to life. For example, the functional part of the ribosome, the biological machine that translates RNA into proteins, is fundamentally a ribozyme, composed of RNA tertiary structural motifs that are often coordinated to metal ions such as Mg 2+ as cofactors. [14]
An example of an RNA stem-loop. If now a second RNA stem-loop has complementary base-sequence, the two loops can base pair resulting in a kissing loop. This animated GIF shows two RNA loops (orange and green) bind to each other in a structure called a kissing loop.
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
Frequently the primary structure encodes motifs that are of functional importance. Some examples of sequence motifs are: the C/D [12] and H/ACA boxes [13] of snoRNAs, Sm binding site found in spliceosomal RNAs such as U1, U2, U4, U5, U6, U12 and U3, the Shine-Dalgarno sequence, [14] the Kozak consensus sequence [15] and the RNA polymerase III ...