Search results
Results from the WOW.Com Content Network
A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.
If an horizontal line is drawn through the intersection point of the diagonal and the internal edge of the square, the original golden rectangle and the two scaled copies along the diagonal have linear sizes in the ratios ::, the square and rectangle opposite the diagonal both have areas equal to . [10]
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line segment from the center to the midpoint of one of its sides.
A = lw (rectangle). That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes ...
Shape factors are calculated from measured dimensions, such as diameter, chord lengths, area, perimeter, centroid, moments, etc. The dimensions of the particles are usually measured from two-dimensional cross-sections or projections , as in a microscope field, but shape factors also apply to three-dimensional objects.
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
Interactive Applet Archived 2015-11-23 at the Wayback Machine by Michael Borcherds showing an irregular shape of constant width (that you can change) made using GeoGebra. Weisstein, Eric W. "Curve of Constant Width". MathWorld. Mould, Steve. "Shapes and Solids of Constant Width". Numberphile. Brady Haran. Archived from the original on 2016-03-19