enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.

  3. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  4. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  5. Hooper's paradox - Wikipedia

    en.wikipedia.org/wiki/Hooper's_paradox

    The length of the shorter side at the right angle measures 2 units in the original shape but only 1.8 units in the rectangle. This means, the real triangles of the original shape overlap in the rectangle. The overlapping area is a parallelogram, the diagonals and sides of which can be computed via the Pythagorean theorem.

  6. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where

  7. Parallel projection - Wikipedia

    en.wikipedia.org/wiki/Parallel_projection

    The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line segment parallel to the projection plane remains unchanged. The length of any line segment is shortened if the projection is an orthographic one. [clarification needed]

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    From the definition of a cycloid, it has width 2πr and height 2r, so its area is four times the area of the circle. Calculate the area within this rectangle that lies above the cycloid arch by bisecting the rectangle at the midpoint where the arch meets the rectangle, rotate one piece by 180° and overlay the other half of the rectangle with it.

  9. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    Interactive Applet Archived 2015-11-23 at the Wayback Machine by Michael Borcherds showing an irregular shape of constant width (that you can change) made using GeoGebra. Weisstein, Eric W. "Curve of Constant Width". MathWorld. Mould, Steve. "Shapes and Solids of Constant Width". Numberphile. Brady Haran. Archived from the original on 2016-03-19