Search results
Results from the WOW.Com Content Network
Prefix name N/A deca hecto kilo mega giga tera peta exa zetta yotta ronna quetta; Prefix symbol da h k M G T P E Z Y R Q Factor 10 0: 10 1: 10 2: 10 3: 10 6: 10 9: 10 12: 10 15: 10 18: 10 21: 10 24: 10 27: 10 30
Prefix Base 10 Decimal Adoption [nb 1]Name Symbol quetta: Q: 10 30: 1 000 000 000 000 000 000 000 000 000 000: 2022 [1]: ronna: R: 10 27: 1 000 000 000 000 000 000 000 000 000: yotta: Y: 10 24: 1 000 000 000 000 000 000 000 000 ...
Prefix name N/A deca hecto kilo mega giga tera peta exa zetta yotta ronna quetta; Prefix symbol da h k M G T P E Z Y R Q Factor 10 0: 10 1: 10 2: 10 3: 10 6: 10 9: 10 12: 10 15: 10 18: 10 21: 10 24: 10 27: 10 30
The template common metric prefixes creates an infobox that lists the most commonly used metric prefixes. The list is a subset of the list in the 8th edition of the official brochure of the BIPM (SI units and prefixes).
If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:SI prefix templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:SI prefix templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code ...
This template transcludes Special:PrefixIndex (yes, you can do that!) along with some extra stuff, to produce a list of pages with names beginning with a certain prefix. Enter the prefix in the first unnamed parameter. To split the list into multiple columns, enter the column width (e.g. 15em, or 30em) in the |colwidth= parameter.
"Note that the IEC names are defined only up to exbi-, corresponding to the SI prefix exa-. The two SI prefixes zetta- (10 21) and yotta- (10 24) have no corresponding IEC binary prefixes, though the obvious continuation would be zebi- (Zi = 2 70 = 1000 7 × 1.180 591 620 717 411 303 424) and yobi- (Yi = 2 80 = 1000 8 × 1.208 925 819 614 629 ...
While the International System of Units (SI) defines multiples based on powers of ten (like k = 10 3, M = 10 6, etc.), a different definition is sometimes used in computing, based on powers of two (like k = 2 10, M = 2 20, etc.). This is due to binary nature of current computing systems, making powers of two the simplest to calculate.