enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    In general, if an increase of x percent is followed by a decrease of x percent, and the initial amount was p, the final amount is p (1 + 0.01 x)(1 − 0.01 x) = p (1 − (0.01 x) 2); hence the net change is an overall decrease by x percent of x percent (the square of the original percent change when expressed as a decimal number).

  3. 1/3 - Wikipedia

    en.wikipedia.org/wiki/1/3

    1 ⁄ 3, a fraction of one third, or 0. 3 in decimal. pre-decimal British sterling currency of 1 shilling and 3 pence; 1st Battalion, 3rd Marines, United States infantry battalion; One/Three, a 20; Loona 1/3, a Loona spin-off

  4. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    If a ≡ +3, X alternates ±1↔±3, while if a ≡ −3, X alternates ±1↔∓3 (all modulo 8). It can be shown that this form is equivalent to a generator with modulus m/4 and c ≠ 0. [1] A more serious issue with the use of a power-of-two modulus is that the low bits have a shorter period than the high bits.

  5. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...

  6. Relative change - Wikipedia

    en.wikipedia.org/wiki/Relative_change

    A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.

  7. Benford's law - Wikipedia

    en.wikipedia.org/wiki/Benford's_law

    Thus, the probability that a number starts with the digits 3, 1, 4 (some examples are 3.14, 3.142, π, 314280.7, and 0.00314005) is log 10 (1 + 1/314) ≈ 0.00138, as in the box with the log-log graph on the right. This result can be used to find the probability that a particular digit occurs at a given position within a number.

  8. Verhoeff algorithm - Wikipedia

    en.wikipedia.org/wiki/Verhoeff_algorithm

    This is actually a single permutation (1 5 8 9 4 2 7 0)(3 6) applied iteratively; i.e. p(i+j,n) = p(i, p(j,n)). The Verhoeff checksum calculation is performed as follows: Create an array n out of the individual digits of the number, taken from right to left (rightmost digit is n 0 , etc.).

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...